		RDRS	SCHEME	CENTRAL CENTRAL	
LICAL				LIBRARY	18CV821
USN				Parisr, Mangan	100 / 021
	Eighth Seme	-		n, July/August 2	2022
		Bridges	Engineerin		
	e: 3 hrs.		0'		. Marks: 100
	Note: 1. Answer any 2. Use of IRC			ell question from each 6, IRC-21, IRC-112	
	chart is per	mitted.		S	0
		58 and IS:783 is p g data may be suite			
		M	lodule-1	Ý	
1		ut the historical deve	lopment of bridges		(10 Marks)
	b. Write a note on c	lassification of bridge	es.		(10 Marks)
			OR		
2	a. Explain the follor (i) Linear water		(ii) Economic span		
	(iii) Afflux	C .	(iv) Scour depth		(08 Marks)
	b. What are the diff	erent types of loads a	nd forces acting on	a bridge?	(12 Marks)
			Iodule-2		
3	A reinforced con Carriage way wid	crete slab has a clear $th = 7.5 \text{ m}$	span of 5.5 m.		
	Footpath on eithe	r side = 600 mm	3		
		ring coat = 80 mm AA tracked vehicle			
	Grade of concret	$e = M_{25}$			
	Grade of steel = Design only for f	eeel5 lexure with neat sketo	ch.	1	(20 Marks)
		<u>Ó</u>			· · · ·
4	a. What is the differ	ence between straigh	OR t and skew slab bri	dge?	(10 Marks)
		inforcement detailin	g in skew bridge	with skew angle less	
	more than 15°.				(10 Marks)
-			<u>Iodule-3</u>		
5	Effective span =	lab only for T-beam 15 m	bridge for the follo	wing data:	
	Clear width $= 7.5$	m			
	Width of footpath Thickness of wea	ring coat = 80 mm			
	Main girders $= 3$	nos			
	Spaced at 2.5 m s Cross Beam 5 no				
	Live load = class				(20 Mardaa)
	Use M ₂₅ and Fe4	13.			(20 Marks)
			1 of 2		
	S				

6

8

OR

For the details in Question Number 5, design the main longitudinal girder and sketch the details of reinforcement. (20 Marks)

Module-4

7 Design a box culvert inside $(3m \times 3m)$ dimension DL 14 kN/m² IRC class AA tracked vehicle unit weight of soil 18 kN/m². Angle of repose = 30°, M₂₅ and Fe415 steel. With load width = 7.5 m, design top slab only with the reinforcement. (20 Marks)

OR

Design a suitable R.C.C. pipe culvert to suit the following data: Discharge through pipe culvert = $1.57 \text{ m}^3/\text{s}$ Velocity of flow through pipe = 2 m/s Width of load (2 lane) = 7.5 mTop width of embankment = 1.5 : 1Bed level of stream = 100.00Top level of embankment = 103.00Loading – IRC class AA wheeled vehicle with a maximum wheel load of 62.5 kN. Draw the longitudinal section, plan and end view of the pipe culvert. (20 Marks)

Module-5

9 Check the stability analysis of abutment for an abutment having top width 1m, bottom width 2m, height 3m. One of the face is vertical suppose a load of 20 kN SBC = 150 kN/m^2 , coefficient of friction = 0.5, check for sliding and over turning, density of soil 18 kN/m².

(20 Marks)

OR

10 Explain:

- a. Bearings used in bridges
- b. Expansion joints
- c. Different types of forces acting on piers

(10 Marks) (05 Marks) (05 Marks)