

18CV821

Eighth Semester B.E. Degree Examination, July/August 2022 Bridges Engineering

Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Use of IRC codes - IS-456-2000, SP-16, IRC-6, IRC-21, IRC-112 Pigeaud's chart is permitted.
 3. Use of IS:458 and IS: 783 is permitted.
 4. Any missing data may be suitably assumed.

Module-1

1 a. Write briefly about the historical development of bridges.
(10 Marks)
b. Write a note on classification of bridges.
(10 Marks)

OR

2 a. Explain the following terms:
(i) Linear water way
(ii) Economic span
(iii) Afflux
(iv) Scour depth
(08 Marks)
b. What are the different types of loads and forces acting on a bridge?
(12 Marks)

Module-2

3 A reinforced concrete slab has a clear span of 5.5 m .
Carriage way width $=7.5 \mathrm{~m}$
Footpath on eitherside $=600 \mathrm{~mm}$
Thickness of wearing coat $=80 \mathrm{~mm}$
Live load = Class AA tracked vehicle
Grade of concrete $=\mathrm{M}_{25}$
Grade of steel $=\mathrm{Fe} 415$
Design only for flexure with neat sketch.
(20 Marks)

OR

4 a. What is the difference between straight and skew slab bridge?
(10 Marks)
b. Sketch typical reinforcement detailing in skew bridge with skew angle less than 15° and more than 15°.
(10 Marks)

Module-3

5 Design the deck slab only for T-beam bridge for the following data:
Effective span $=15 \mathrm{~m}$
Clear width $=7.5 \mathrm{~m}$
Width of footpath $=600 \mathrm{~mm}$
Thickness of wearing coat $=80 \mathrm{~mm}$
Main girders $=3$ nos
Spaced at $2.5 \mathrm{~m} \mathrm{~s} / \mathrm{s}$
Cross Beam 5 nos@ 3.75 m c/c
Live load = class AA tracked
Use M_{25} and Fe 415 .
(20 Marks)

OR

For the details in Question Number 5, design the main longitudinal girder and sketch the details of reinforcement.
(20 Marks)

Module-4

7 Design a box culvert inside $(3 \mathrm{~m} \times 3 \mathrm{~m})$ dimension DL $14 \mathrm{kN} / \mathrm{m}^{2}$ IRC class AA tracked vehicle unit weight of soil $18 \mathrm{kN} / \mathrm{m}^{2}$. Angle of repose $=30^{\circ}, \mathrm{M}_{25}$ and Fe 415 steel. With load width $=7.5 \mathrm{~m}$, design top slab only with the reinforcement.
(20 Marks)

OR

8 Design a suitable R.C.C. pipe culvert to suit the following data:
Discharge through pipe culvert $=1.57 \mathrm{~m}^{3} / \mathrm{s}$
Velocity of flow through pipe $=2 \mathrm{~m} / \mathrm{s}$
Width of load (2 lane) $=7.5 \mathrm{~m}$
Top width of embankment $=1.5: 1$
Bed level of stream $=100.00$
Top level of embankment $=103.00$
Loading - IRC class AA wheeled vehicle with a maximum wheel load of 62.5 kN .
Draw the longitudinal section, plan and end view of the pipe culvert.
(20 Marks)

Module-5

9 Check the stability analysis of abutment for an abutment having top width 1 m , bottom width 2 m , height 3 m . One of the face is vertical suppose a load of $20 \mathrm{kN} \mathrm{SBC}=150 \mathrm{kN} / \mathrm{m}^{2}$, coefficient of friction $=0.5$, check for sliding and over turning, density of soil $18 \mathrm{kN} / \mathrm{m}^{2}$.
(20 Marks)

10 Explain:

a. Bearings used in bridges
(10 Marks)
b. Expansion joints
c. Different types of forces acting on piers.

